Error Reporting Logic

Ciera Jaspan Trisha Quan Jonathan Aldrich
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA USA Pittsburgh, PA USA Pittsburgh, PA USA
ciera@cmu.edu tkg@andrew.cmu.edu aldrich@cs.cmu.edu

forall con : ORMConnector in self.CONNECTORS |
forall conp : Conponent in self.COVPONENTS |
forall p : Port in conp.ports |
(attached(con.caller, p) ->
decl aresType(conp, Data) and
decl aresType(p, DataPort))

Abstract—When a system fails to meet its specification, it can
be difficult to find the source of the error and determine how to
fix it. In this paper, we introduce error reporting logic (ERL),
an algorithm and tool that produces succinct explanations dr
why a target system violates a specification expressed in firs
order predicate logic. ERL analyzes the specification to dermine
which parts contributed to the failure, and it displays an eror
message specific to those parts. Additionally, ERL uses a hestic
to determine which object in the target system is responsilel
for the error. Results from a small user study suggest that tle
combination of a more focused error message and a responsibl very small inner predicate, and it only calls pre-definedrato
object for the error helps users to find the failure in the sysem predicates.
more effectively. The study also yielded insights into howhe y¢yhq ser must read the specification itself, they can dyick
users find and fix errors that may guide future research. . . e .

become lost in the details of the specification. There is np wa
. INTRODUCTION to tell which sub-predicates in the specification failed tlse

Many specification languages are based upon first-ordéfer must check each one. The user "’_"SO doesn’t know which
predicate logic. This is a very natural route to take igelements in the system caused this failure and so must check

specifications; it provides a concise, expressive, and-wéll €lements with matching types.

understood way for describing system-level details. Exemp .Even if the spemﬁca‘qon writer provided an error message,

of such specification languages in recent literature ireludhis would not necessarily help a user. An error messagedvoul

Acme, SCL, and Alloy [1]-[3]. In each of these Ianguageé‘?” us the purpose of the speC|f|cat|_on,_ and this might hadp t

FOPL-based specifications constrain a system, and a t§§Fr l00k for bad patterns of behavior in the system. However

produces errors when there is an inconsistency between thill does not describe which predicate failed or whicleah

specifications and the system. The error messages produfeidie system caused the failure. _

by these systems generally fall into three categories: In Figure 1, the user would_havg to check the entire system
« Specification identifiedJnder this mechanism, the tool?cor conformance to the specification. What we would prefer

produces an error message that states which specificafﬁ)fim error message that says:
failed. The user must read the specification and manually MyPort must declare the type DataPort since
analyze the system to determine which part of the system MyConn.caller is attached to myPort
broke the specification. Error reporting logic (ERL) provides an automated way for

« Human generated messagdkhis mechanism attempts tocreating error messages such as the one above. ERL presents
provide the user with an intuitive understanding of theach failing point as a unique error. To do this, it singles ou
specification. The specification writer makes a generimly the failing predicates and assigns responsibility hedf t
summary about what the specification is checking, ariror to a specific object in the system.
this is used as the error message. The user can thein this paper, we will provide four contributions related to
use this message as a guide to understand the generedr messages from FOPL-based specifications:

problem. o We present a user study that provides several insights
« Hybrid systemsSome tools also hybridize the two mech- jnto how users examine errors to find the root cause of the
anisms; they will use a human generated error message problem and how users attempt to fix the error. Primarily,
if it exists, but they will fall back on a specification we found that users see an error message as a single task
identifier. which they must resolve, they only use keywords to find
These mechanisms work very well for specifications that are the problem rather than reading anything in depth, and
short and have an obvious point of failure. However, they do they frequently rely on pattern recognition to find and fix
not work well for complex specifications, such as the Acme errors. (Section 1)
specification shown in Figure 1. By Acme standards, this is a. We present ERL, a system for automatically generating
medium sized specification. It has 3 levels of quantificaten error messages from a specification based on first-order

Fig. 1. Sample Acme Specification

TABLE |

PageUl SectionUl R PARTICIPANTS
: f ﬁ - [ID [Configuration 1 | Configuration 2 |
L B o / A | Web + ERL Build
i G 8 mdii. ot B | Web Build + ERL
PageModule SectionModule minvoct C Build + ERL Web
B B " D Build Web + ERL
&Se:tiunData] K. J : \

can only write one message for the entire specification, the
error message is typically about the general purpose of the
specification.

- i iy
PageData PermissionsData A

!

II. HOW USERS FIND SPECIFICATION ERRORS

We ran a small user study of AcmeStudio to determine
how users fix errors, with and without ERL loaded@he four
participants were Masters students and had used AcmeStudio
to complete a couple of class assignments. The participants
were told that the study was about usability in AcmeStudio
predicate logic. Section Il will show how the ERLand how developers find and fix errors; they were not told that

handles each of the specifications from the user studiye error messages were changed until after the main part of
and Section VI shows how the implementation of ERLhe study.

performs with MDS, the most complex architectural We provided the participants with two sets of Acme speci-
specification built with Acme. fications, and we created an architecture for each whichebrok

« We have implemented ERL as a reusable component s5ryeral of the specifications. The participants were asked t
have integrated it within AcmeStudio [4]. The integratiorix all the errors in the architectures. We asked participant
was relatively straightforward and required only a smalflk aloud while they worked, and we recorded each session
amount of work to change the error messages. Sectigfth voice recordings, screen capture, and our obsention
IV provides implementation and integration details. ~ Nnotes.

« During the user study, the same participants also usedeach participant used both sets of specifications, and each
ERL. In section V we describe how the users reacted Bgrticipant used AcmeStudio with and without ERL loaded.
the new error messages. Three of the four participarft@rticipants were each assigned a different configuratiom i
benefited from the ERL error messages. The remainififferent order, as shown in Table I.
participant did not benefit, but was not hindered, by the The seeded errors were approximately equivalent in both
error messages. systems. We created five categories of specifications, as de-

Throughout this paper, we will use the Acme specifica@”ed in Table Il. Each system contained a broken spedificat

tion language (and AcmeStudio, the graphical interface afl¢Mm €ach category, and they were approximately the same
el of difficulty to find and fix.

checker for Acme) as our example system. AcmeStudio allo ,)
developers to view a graphical representation of an archite hile Acme supports hand written error messages, they are

ture. While the developers can access and edit the Acme cdyfgeduently used in practice, and we did not include them in
behind the graphical view, it is typically not used. Acmasieu € user study. The participants either received a message f
displays the architecture using component-connectoraiag ERL, or they received the name Of th_e specification Wh'ch
which can be edited entirely through a user interface. Aﬂaam[?ml_(e' In both systems, .the specification source was gas,lly
diagram for an architecture is shown in Figure 2. available by double-clicking on the error. The specificasio

If an architecture fails to meet a specification, a red erior WEre Written in a style familiar to Acme users, and we only
angle appears at the place where the specification was defif§d atomic predicates of Acme which our users were already
as shown in Figure 2. Notice that this is not necessarily tfmiliar with, found below.
component which is causing the failure. If the specification ¢ binary relationssuch as<, >, and==.
was defined at the system level, rather than the component Size(l)to get the size of a list.
level, then no error triangle appears. « attached(ol, 02jo test ifol is directly attached t@2.

In Acme, a software architect can choose to associates declaresType(o, tio test if o declares the type.
a handwritten error message to each specification. If the results from the control

specification fails, for any reason, AcmeStudio displays th We will start by looki t how th ticinants fixed
error message and a link to the specification code, in additio € will start by looking at how Ihe participants fixed errors

to the graphical indicator of the error. If the architect diot In the control system. This provided several insights imabg

provide a) default error m.e_ssa.ge, then Ac_meStudio diSplay$The participants used an earlier version of ERL than is pitesen Section
only the link to the specification code. Since the architeat, but it had the same practical effect in the study.

CMSDatabase

Fig. 2. The Web System in AcmeStudio

TABLE Il
BROKEN SPECIFICATIONS

Type of error How broken in the| Example specification from the user study
given architecture

Simplecontains atomic The atomic fails once ru! e atlLeast neAl tachedRol e =
si ze(sel f. ATTACHEDROLES) >= 1;

predicates and at most 1
universal quantifier

rul e hasl nAndQut =
(exists p:Port in self.PORTS |

Conjunctioncontains at least| Both parts of the decl aresType(p, ORMPort)) and
1 conjunction of atomics and conjunction fail in (exists p:Port in self.PORTS |
at most 2 quantifers one instance decl ar esType(p, dat aProvi der)) ;

rule ResultsOnly =
forall conp: Depl oyResults in sel f. COVPONENTS |

Quantificationcontains at The specification forall p:inputPort in comp.PORTS |
least 2 quantifiers falls for two decl ar esType(p, resul tsPort);
instances

rul e usi ngXM_Rol es =
forall r:Role in self.ROLES |
decl aresType(r, XM.ReceiverRol e) or
decl aresType(r, XM.Provi derRol e);

Disjunctioncontains at least | Both parts of the
1 disjunction and at most 1 | disjunction fail in
quantifer one instance

rule conpilinglsCQutput =
forall p:Port in self.PORTS |
decl aresType(p, conpilePort) ->
decl aresType(p, outputPort);

Other may contain any other| The predicate under
predicate and one universal | test fails once.
quantifierd

lems users have with the existing error reporting mechasyisnthe participant then spent several minutes trying to urideds
including problems which ERL solves and problems for futuréhe specification and reviewing the architecture around the
work. In this section, we will look at trends we saw whererror location. This participant became more frustratethiat
participants from our user study used the original versibn point, asking
AcmesStudio. Later, in Section V, we will see how ERL helped “But which part of the error is failing? It would be
several users find the root cause of the error. nice to see which part is failing so | don’t have to

With each of the errors, all of the participants used the parse it.”
graphical cues as a _starting point. Of the five sp_ecificaiions The final major technique participants used to find the
only four had graphical cues; one rule was defined gt_ theror was to recognize and mimic “good” patterns. They
system level and therefore had no graphical cue. Partitipgh|q start noticing the patterns of how architectural edets
B investigated this error early on and decided to come bagftre |aid out and then check other elements to see if they
to it later because he could not easily find the location of the \tormed to the same pattern. In some cases, participants
error. o . would believe they had found a problem that didn’t actually

The next step participants took was to read the specificatigiist or they would find a problem that was different from
source. When participants did this, they typically did ndf e gne they believed they were after. Upon finding any
read the specification, but rather scanned it for keywords sy .nsistent patterns, the participant would attempt tkema
as type names. When they flipped back to the architectuf§am identical.
they looked for a place where there were elements with thoserys \yorked best if the participant understood the cause of
types all near each other. They would then investigate 148 ahq orror hefore looking at the good example, or at leastdigur
of the ar<_:h|tecture thoroughly to determine whether somgth) + the problem while they were looking at the example. If
was obviously wrong, such as an unattached connector. Thg participant did not understand the cause of the errey, th
par‘ugpants fully read the specification only when theyldou .q g accidentally believe the correct example was attiad
not find the problem through other means. ... incorrect one. This problem occurred with theantification
i Participant D did attempt to f_uI_Iy re_ad the spec_|f|_cat|0n Qrrors from Table 2 since the participants could not tellalihi
find an error, but soon ran into difficulties. The participaRts jaments cause the failure
working on theconjunctionerror from Table Il and started pyiicinant C used this technique quite frequently durieg t
by quickly reading through the specification. The partiaipa ., nro| part of the study. This participant made four comtaen
noted that there were two parts to this specification and saig it this during the study, usually comparing himself to a

“Does it tell me which side is failing?... Nope, no mgnkey:

help.” “Doing like a monkey, trying to match patterns...”

2Build had a failing implication, and Web had a failing existal In several cases, Participant C found the inconsistency and

fixed the error without ever knowing what the problem was. The oracle M is provided by the host specification sys-
tem. The oracle provides answers to queries ataiatic

B. Expectations for ERL predicates that is, a predicate which has some host-specific
Based on the information from our user study, we believg@mantics. Our concept of an oracle is based on the concept
that error reporting systems should: of the oracle used in testing and [5]. In ERL, the oracle can
. Direct users to the likely cause of the error, rather thdf gueried for the following: _ _
the location where the specification is defined « evaluate(I', a) evaluates whether the atomic predicate
. Assist users by including relevant keywords and exclud- IS true, given the context provided in o
ing irrelevant ones « items(T, e) retrieves a list of objects for a quantifier, given
« Focus users on the part of the error they need to fix some hOSt'Sp?CIfIC expressien .
« Provide users with examples that correctly pass the spece freevars(p) retrieves the free variables jn
ifications o text(T, p,isNegative,isDeontic) gets the message for

the predicatep, given the contextl. When p is an
atomic predicate, this message is host-specific. We list
a sampling of messages defined by the Acme oracle in
Figure 3. If isNegative is true, we must negate the
message. IfisDeontic is true, the oracle produces a
I1l. ERRORREPORTINGLOGIC message in deontic mode (“a must be equal to b”), while

. Ifitis false, th is stated fact (“a i [
In this section, we will see how ERL breaks down specifi- Itolb,l,i alse, the message is stated as a fact ("a is equa

cations to include only the relevant information about aorer
To facilitate this explanation, we will use the error messag

ERL pr_odqqed dun_ng the study. . . that ERL will blame the error on, anx is the set of variables
The intuition behind all of these rules is that ERL will pro- . .
used to createn that are still unbound. Notice that for a

duce an error for each “fix task” that the user must complete in e . :
. single specification, the algorithm can produce multipleer

order to make the specification succeed. Therefore, a user ma . .
. o messages, and each error message has its own responsible

have to complete several fix tasks before a specificatiorepass,, .] . . .
object. It is possible for the responsible object to have no

but each task can be thought of as logically independent frorElue represented in our rules @sln this situation, the host

the other tasks. By doing this, ERL focuses the user on Onsxecification system may use its default assignrent.

a small portion of the overall failure and provides keywordS The predicatep may be any first order logic predicate.

relé\sll_nt lfor only thit pOftIOI:]. ith a sinal bERL currently works for conjunction, disjunction, impligan,
also associates each error message with a singie o Jf’?&ﬁation, universal quantification, and existential gifiaat

which is responsibl_e for.the error. .This allows a system w a on. Other first-order connectives, such as exclusivaudis;
features such as Jumping to_ a !me number_ of code, or, fon or unique quantification, can be added to ERL, but higher
the case of AcmeStudio, indicating an architectural eletme&der predicates are not supported. Predicates also mely
as being at-fault. The choice of thresponsible objects a atomic predicates that are defined by the host specification

hegr|st!c because there is not enough |nformat|on to teithvh system. Atomic predicates may be nested if the host system
object is truly at-fault. For example, consider the caserethe

. !) allows it, but ERL treats the entire predicate as an atomic
the predicated(z) = B(y) fails. It is not clear whether P

B hould b h Ki bl heth predicate and will not descend into it.
(y) shou e true, thus making responsible, or whether In the remainder of the section, we will look at the rules

A(z) should be false, thereby causingo be responsible for 5, 040 |ogical connective. We will refer to the example

the error. Even in a single atomic predicate, the respamsily,q ifications from Table Il and also provide the error mgssa
object is ambiguous if there are multiple variables, sucthas and responsible object which ERL produces

case inequals(z,y). Therefore, ERL uses a heuristic based T

on the structure of the specification to determine which abje Simple Specifications

is likely to be responsible. Regardless, ERL does guaranted-or thesimpleerror shown in Table II, ERL produces the

that the responsible object was used in the failing predjcaerror message:

even if it is not semantically the root cause. The size of interDatal.AttachedRoles must be
The judgments for ERL are in the form greater than or equal to 1.
(Responsible object: interDatal)

The ERL rules for atomic predicates are:

As we will see in the next section, ERL achieves three of the
four objectives above. We leave the last task, providingause
with examples, for future work, as it is not clear whethesthi
will help users or possibly misdirect their attention.

The setS is a set of tuplegr, x, m) wherem is the error
messagey is the responsible object, the host-specific object

MT'Fp—S

which is read as “Given the oracl®/ and contextl’, the
predicatep produces the set of errois’. M_.evaluate(T’, a) = true
I" is a context that maps a unique variable name to a host- M,T'ta—0

spec!f!c O_bJeCt' B)hOSt we are referr'ng to any FOPL-based 3Acme assigns the error to the object which defined the spaiiifit; this
specification system that uses ERL, such as Acme. is thesel f object in the example specifications.

(A—TRUE)

M text(T', declaresT'ype(a,b), false, true) I'(a) + * must declare the type” +(b)
M text(T, attached(a,b), false,true) = TI'(a) +“ must be attached to” +(b)
M .text(T, equals(a, b), false,true) = TI'(a) +“ must be equal to” H'(b)
M text(T, equals(a,b), true,true) = I'(a) +“ must not be equal to” ()
M text(T, equals(a,b), false, false) = TI'(a)+“is equal to” +I'(d)
M .text(T, equals(a, b), true, false) I'(a) + “is not equal to” +I'(b)

Fig. 3. Sampling of atomic messages for Acme

M .evaluate(T',a) = false

MTFa—
{(e, M freevars(a), M.text(', a, false, true))}

(A—FALSE) As an alternative to joining, if the specification system has
hierarchical error reporting, ERL could create sub-erard

o _ _ ~instruct the user to fix one sub error.
As the specification has only an atomic predicate, this was

produced by directly querying the oracle for the truth o&thi M,TF pg < 0 M,TFp,— S
statement and the error message. The message is stored in the MTFpavVps —0 (V—TRUE—1)
error set. At the atomic level, we do not yet know which object

M,T'Fp, — S MTFp,—0

will be responsible for this failure, so this is left agor now. (V—TRUE—2)
Section I11-D will show how this is filled in. M. EFpa Vs =@ o
. M,TF po — {(re,xs,mb), ..., (rk xE mk)}
B. Splitting errors M,TF po = {(r xbymi), . () x0,mi)}
Our goal in ERL is to make each error represent a correction E>1 j2>1
. e . (V—FALSE)

that the user must make in order to meet the specification. To M,TF pa V pp — {(e,

do this, we will split errors upon evaluating a conjunction xoU...UxbUxpU...Ux],

so that each side will produce a separate error. In ERL, the my+“and”+...+“and " +mr+ ‘

conjunctionerror from Table Il produces two distinct errors: “oor”4+mp4+“and”+...+“and " +ml)}
There must exist a p in SectionData.Ports such that D. Assigning a responsible object
p declares the type dataProvider. When generating errors for a failing universal quantifier,
(Responsible object: SectionData) we would like to see which quantified objects caused the
There must exist a p in SectionData.Ports such that fajlure rather than a single failure for the entire predicat
p declares the type ORMPort. This allows the user to determine which parts of the system
(Responsible object: SectionData) failed and to work on each task separately. Therefore, like t

The ERL rule that produces these errors, shown belogonjunction rules, the rules for universal quantificatiquiits
simply evaluates each side independently and unions tise s8tors and produce separate sets of errors for each failing
of errors together. Because of this split, the errors from tlobject. Additionally, the rules for universal quantifieatimust
two sides may even have two different responsible objectsdetermine the responsible object for the error by using the

heuristic to assign each error to the object bound in theastar

M,TF pg — S, M,TFpy, — Sy universal quantifier. Therefore, ERL produces the follayvin
M,TF pa Apy, — Sa US,, A error messages for trguantifier specification in Table II:
C. Joining errors InputT3 must declare the type resultPort.

(Responsible object: InputT3)

InputT4 must declare the type resultPort.
.. (Responsible object: InputT4)
LI’he rules for universal quantification are:

When the user attempts to fix tligsjunctionerror in Table
II, they are working on a single task. Therefore, ERL shows
a single error message. While the message can be lengthy,
contains all the keywords which a user might need to fix the
error.

DataModelReceiver0 must declare the type XMLRe-
ceiverRole or DataModelReceiverO must declare the .
type XMLProviderRole M.items(I', L) = {o1,...,0n} =~ n2>1
(Responsible object: DataModelReceiver0) M, Tz — 0_1] =S

This message was created by the ERL rule for joining :
messages on a disjunction failure, described below by rule M, Tz > on] I p < Sn
(v — false). Notice that if we have already split the error (& fresh in T)
on both sides, we must rejoin all the splits into a singleél 0i /) | (.17\{(,71;5 szz-e/\[/x.g;c—)/\ie R
error message. This does mean that the error messages are {(r,x/z,m) |
much longer, but they are also specific to the task at hand. (r,x,m)e SiA(z¢gxVr#e)Aie{l...n}}

M .items(I', L) =0
M,T'FVzxeL .p—10

(v=0)

(V=N)

The rules bind each object individually, generate erramfr
the inner predicate, and then substitute in the responsible MTFpa—s® MTFp,— 0
object if the error does not already have one and if the messag
uses the variable bound by the quantifier. The end result is
the heuristic that the responsible object is inserted by thes, T+ p, — S, M,TFpy,— S, Sq#0
inner-most quantifier of the failing predicate. This makesse MTtFps = pp—0
since the inner-most quantifier may rely on outer quantifiers
produce the quantification list. We have also observed that, M, I'Fp.—0 MTFp,—S S#0
general, specification writers order quantifiers with thesmo M.T'Fpa = py — {(r,x U M freevars(pa),
general variables first and then proceed into more specific™ * * since " + M.text(L', pa, false, false)) |
variables. Even if the selected object is not truly the reatse (r;x,m) € S}
of the failure, the rule does guarantee that the object isl use The rules for the existential quantifier, below, also take
in the error message due to its inclusionsinand therefore advantage of this message form. Like disjunction, existstmu
plays some role in the failure. join the current error sets. While this results in a reldyive

If there is no universal quantifier that bound a free variablenger message, it contains only the keywords that the user
in the error message, it is possible for ERL to return erroreeds.
which do not have a responsible object. Since there are

MTrps — 0 D

(= —TRUE2)

(= —FALSE)

no universal quantifiers, the variables must either haven bee M.items(T, L) = {o1,. .., 0n}
introduced by an existential or be pre-defined. In this casey; Iz — o] p— Si ... M,T[z — on] Fp = Sn
ERL uses the default responsible object that would have been S1=0V...VS,=10
used by the host system. Acme defaults to the object which n>1 (x freshinT) (3—ThUE)
defined the specification, theel f object, since this is the MTF3zeL.p—10
only known obiject. .)

This rule requires that all quantified lists in the host must Meitems(I', L) = 0 (x fresh - D) —— (3—FALSE—0)
be finite. This is true in the systems we expect ERL to worklL 7 32 € L . p— {(e, “There exists no " +z

. . + “such that ” + M.text(T", p, false, false))}

for, as the host system must be able to test each item in the
list. 4 M.items(I', L) = {o1,...,0n} n>1

Universal quantifiers make a clear case for when splitting M,z — o1]Fp— S
is important. Consider a specification which quantifies aver :
list of 100 elements, and 10 of these elements cause a failure M, Tz — on] F p < Sn
possibly failing in different ways. Instead of a single &fro Sy EDA ... NSy £0 (z fresh in T)
ERL will produce 10 errors. Each error would be associated MTF3zel p— (3—FALSE—N)
to a distinct object, and the error messages themselvesiwoul {(e, M.freevars(p), “There exists no ” +z
be different forms if the specification failed in differenays + " such that " + M. text(I', p, false, false))}
for each variable binding. F. Negation
E. Relying on current state ERL handles negation predicates separately from the other

In most cases, ERL creates error messages in the deoﬂfﬁd'gates' Ift_5|mply we p”tﬂt out dr.'Ott’ or an equ_|vtalednt
mode and describes a correction that the user must make to'1o ba'l 'V?t’ an)é |(;ne bvlve see e| pre I(t:'a e, ;/vet Ca(? llanrlff_uce
the specification to be correct. However, ERL must sometim@4'P!guity and double (or more) negatives. Instead, Irs

describe the current state of the system to the user, such agqrmaliz_es the _specification by pu_shing not predicates iidwa
the rules for implication and existential quantification.the to' atomic predicates, and then it requests that the oracle

rules for implication, ERL provides the user with infornuati provide a reasonable negation messages for atomic preslicat
about how the error’ was triggered The oracle then produces single negative phrases, exaoiples

For theother error in Table I, ERL produces: which are shown earlier in Figure 3. As most ator_mc messages
. are a single phrase, we have pushed the negatives down to a
outputTO must declare the type outputPort since |eye| where they are unambiguous and understandable. The
outputTO declares the type compilePort. rules for negation below assume that the specification has
(Responsible object: outputTO)

already been normalized.
ERL produced this by asking the oracle for the text on the

left side of the implication stated as a fact rather than as M.evaluate(T', a) = false

an instruction, as described earlier in Figure 3. The rubes f (~—TRUE)
) f ")]\47 I'F—a— (Z)
implication are:
M .evaluate(I', a) = true
4If the list was infinite, then the host system must have thaepeoving (——FALSE)

M,TF —a—

capabilities in order to test the predicate. ERL is not etgub¢o work under
’ P e {(e, M.freevars(a), M.text(T', a, true, true)}

these environments without significant modification.

IV. I MPLEMENTATION OF ERL to using the system without ERL. When participant D initiall
We implemented the ERL rules in Prolog, and we provideQPe”ed the second system, he expressed concern that tfee erro

a Java wrapper and interface for the oracle. For a system‘{g'® going to be as difficult to fix as before:
use ERL, it must be able to transform its specifications inéo t “Ugh, it’s all typecheck [errors] still...”

types defined by ERL, and it must provide an implementatigitter examining a few error messages, the participant chose

of the oracle. to start with the disjunction error and fixed it within a few
We implemented a transformer and oracle for AcmeStudiginutes by doing what the error message suggested. Upon

The ERL addition to Acme required 139 LOC for the transseeing the error go away, the participant commented:

forming functionality, and 643 LOC for the oracle. Of thedm “So, this seems like not too much thought.”

of code for the oracle, 486 LOC were for generating messaqgs L B

for atomic predicates and retrieving the names of elements iaruueant B found .th.at the error message was not at al

T". The remaining code was used to interact with AcmeStudicP?lprI though participant B did not find any of the error

existing typechecker. Acme utilizes all of the rules desedi messages helpiul. - -
in Section I, ERL appeared to help participants A, C, and D when fixing

errors that came from failingxistentialsand failing impli-
V. USER STUDY RESULTS cations In particular, ERL helped clear up confusion about

As discussed in Section I, we ran a small user stuckfriable bindings. In the control part of the study, Paptcit
where each participant attempted to fix errors in two Acnfe Was slightly confused by the implication specification in
architectures. The users were provided with ERL for one fble Il. The participant believed that twibfferentports had
the two architectures. Both architectures contained filimga {0 be a compile port and an output port. Participant A read
specifications, as described in Table I, and ERL expandtf Specification and examined the seemingly correct system
these into seven distinct errors due to splitting from copju Several times before finally realizing the confusion. When
tions and universal quantifiers. The qualitative data ssggepParticipant C encountered this error with the ERL message
that ERL is helpful for many users, particularly for compleknStéad, the participant did not even have the opportuaityet
specifications. When it was not helpful, it did not misdirect confused. The ERL error message replaced the varaiith

otherwise hinder users. the specific port nameut put TO, and the participant clearly
understood that this port had to be both an output port and a
A. Results by type of error compile port. The only time participants saw variables ia th

For the simple errors, as defined in Table I, users dicerror messages was when they encountered a failure from an
not receive any additional benefit from ERL. The graphicgxistential. Participant D did not appear to be botherechisy t
indicators were already in the correct place in the contrwlhile participant A would jump to the source to understand
configuration, and the specification was short enough tHhe error better.
users could quickly find the problem. Additionally, the rule The true test of ERL was theniversal quantificatiorrors.
names themselves were descriptive enough that the erroes whese errors were generally the hardest to fix as they were the
fairly obvious. Users almost always went directly to thessau most complex, they were declared at the system level, ayd the
and guessed what the problem was without reading the erfaited in two places in the architecture. For these erroRi, E
message, so ERL did not help or hinder in this case. was clearly an improvement over the control system. In the

One problem we noted was that fully qualified names i@ontrol, participants narrowed down their search by regthie
error messages confused participants. Upon seeing a gdalifipecification, but they still had problems after that. InBudd
name, participants were overwhelmed by the number of wor@kample, there were four objects that were being quantified
so we have removed this from ERL. The graphical indicatogyer, and participants had to carefully inspect each oneyTh
already point the user to the location of the objects, soethaliscovered the problem by carefully exploring each of the fo
should be little information lost. The participants in tisidy objects and noticing that two were slightly different. Then
did receive error messages with fully qualified names, aitidley went back to the specification, determined which set of
we expect that this change would have improved the overbilo objects were causing the problems, and corrected them.
results. However, participant C believed that the correct connector

As expected, ERL was much more helpful faonjunction were the incorrect ones, and accidentally “fixed” the wrong
errors. Participant D, who made several comments about gennectors! The participant realized the mistake aftertdloé
knowing which side of a conjunction was failing during thelid not remove any errors when rechecking the system. The
control portion of the study, was clearly helped by the ERERL errors were clearly helpful in these cases, and pastitp
error messages. When using ERL, this same participant rexgpeared less frustrated during their search for the rateca
the error message for the conjunction failures and fixed both o))
errors in approximately three minutes. B. Participant impressions of the ERL messages

The results of thelisjunctionerror were surprisingly mixed. After the users fixed the errors in both architectures, they
While we expected the wordiness to bother participants, paook a post-survey about the error messages that they sakv. Bo
ticipants A and D strongly preferred the ERL error messagparticipants C and D preferred the ERL messages. Participan

A believed the two configurations were very similar and ndsince the rule is defined at the system level, the user would
ticed little difference between the error messages. Iatergly, have to investigate every connection between actuators and
this participant used and was clearly helped by the errother components. To make matters more confusing, the user
messages during the study. The error messages were possilnyld probably look for an Actuator that is connected to
unobtrusive enough that the difference did not registeh# tsomething that is not an Estimator, when the real problem
user given all the other features of AcmeStudio. is the port type of the Estimator’s port.

Participant B preferred to just know which specification ERL would have produced the error message:

failed and view the source directly. However, the partioipa estPort must declare the type CommandNotifProv-
chose not to read the specification source when using ERL, PortT since actPort is connected to estPort.

even though the source was equally available in both system§q would direct the user to estPort, the port on the Estimato
This participant switched quickly between tasks in bothtan, hich s causing the failure. If this failure occurred mplé

of the study and did not appear to spend much time focusiggces in the system, then ERL would produce a distinct error
on the errors. The participant also completed very few ta each failing port.

during the study and had to be stopped due to time constraintspngther MDS rule checks that a component does not

From this qualitative data, we believe that the error mesgnnect twice to a port on another component. Like the
sages provided by ERL certainly help with some kinds Qfrevious specification, this specification has several tfies
failures, and some users clearly prefer themndnsituations 4. eventually has an implication that checks whether some

did ERL misinform the users, lead them away from thgors are connected incorrect. The generic error message fo
cause of the error, or otherwise hinder their progress. i €gps rule is:

S|tuat|on,_|t gnher helped or had no effect on their progres Rule 10: No two ports of a component should be
towards finding the error, other than a few seconds to read the

message. For this reason, ERL is being put into use within connected t,o the same target port. e .
AcmeStudio. This does explain the problem that the specification is tryin

to find, but it doesn’t tell us which ports are the problem.
VI. COMPLEX EXAMPLES FROMMDS If a component had two portgort A and por t B that both

The Acme specifications in the case study were created fentually connect tot her Por t , then ERL would produce
the purpose of the study, so in this section we explore hdfie specific error message:
ERL handles a real Acme specification. For this purpose, we portA must equal portB since portA is connected to
will use the Mission Data System (MDS), one of the most otherPort and portB is connected to otherPort.

complex architectures specified in Acme. MDS specifies |@eally, the user should see both the generic and specific
state-based reactive control architecture for space mgstemessages. The generic description provides the user with
More about MDS and its Acme specification can be founghe specification intent and would help the user understand
in [6]. the system goals. However, the ERL error message provides
What makes MDS so complex is the number of constrainggtionable guidance for how to fix the current error.
between two or more architectural elements. In order toThe last MDS example we consider checks that Sensors
express these constraints in Acme, the user needs a urnivessa in the correct state based upon how many Estimators are
quantifier for each element, plus quantifiers over the sulistening for data. The generic message for this rule is:
elements that attach larger elements together. The entt resu Ryle 4.4: A sensor that it not connected to any
is that in order to specify a constraint betweerelements, estimators should specify that it is only raw data; if

we may need2n quantifications. For this reason, it is not i is connected to more than one estimator. it should
uncommon for Acme specifications to have four or more specify that it is informative to more than one.

qugntlflert'i. lexity of th ificati th it (?f course, only one of these two things could be true at any
'ven the complexity of these speciications, the Writers oint; the sensor can not be hooked up to no estimators and
MDS also added generic error messages to each specificat

In thi i i th . Bre than one estimator at once. With ERL, not only does
N this section, we Wit compare these generic ermor messagfis ser find out which sensor is causing the problem, they

to the Spec'f'c error messages pro_v_ldec_i by ERL. also find out which predicate is actually breaking and rexeiv
Figure 4 is a sample of a specification, and all necessafy, guidance on how to fix the error:

sub-specifications, from MDS. As we can see from the error .

message, this rule checks that only estimators receive com- mySe_nsor.rawData must equal true since the number

mands from actuators. The specificationl e112 calls out OT estimators cpnnected to mySensorPort is 0.

to a sub-specification to do the work. If this specification While the generic messages do help us understand the

fails because an Estimator’s port was properly connectet, UrPose of the specification and prevent us from makm_g éutur

not of type CommandNotifProvPortT, the original version ofT0rs, they do not help a user find the cause of their error.

AcmeStudio would give the error message: This is particularly important for specifications as coroated

Rule 2.3: An Actuator may Only notlfy estimators of 5The ability to descend into an Acme sub-specification isently being
commands implemented.

rule rulell2 = R2_3(self)
<<l abel : string = ‘‘Rule 2.3: An Actuator may only notify estimators of commuands'’; >> ;

anal ysis R2_3(sys : system) : boolean =
(forall conpA : ActuatorT in sys. CO/PONENTS |
forall pA : ConmandNotifReqrPortT in conpA PORTS |
forall compX : Component in sys. COVPONENTS |
forall pX : Port in conpX PORTS | connected(pA pX) ->
(decl aresType(conpX, EstimatorT) and decl aresType(pX, ComandNotifProvPortT)));

Fig. 4. MDS Specification

as MDS; even if the control system using MDS is small, it isshen we consider how the users find and fix these errors. A
still difficult to parse through the specifications by harfdhe user of ESC/Java works on the entire method and considers
system itself is also large, the user must spend a great flealte whole problem as a single error. On the other hand, a user
time checking parts of the system that are already corréa. Tof Acme regards multiple failures from a universal quantifie
user study and MDS examples show that ERL error messagassdifferent errors. While the errors were all generatedhiey t
are a useful addition to the existing error reporting me@ma same specification, they are about different parts of theesys
because they help users to find the root cause of the errar, esad likely are not related.

in complex specifications and large systems. The model checking community has also investigated error
VIl. RELATED WORK reporting [8]; the work which is closest to ours is that of.[9]

The goals stated in [9] are very similar to the ones we present

Shapiro [5] explored and formalized algorithms for ho
. . . hey look to get at the cause of an error trace from a model
programmers debug logic programs. Shapiro’s algorithm fQ

debugging a system with incorrect output is the most similar checker, rather than the symptom. When they determine the

;~ _cause of the error, they then produce one error trace for each
the algorithm we have proposed. Like Shapiro, we investiga
. cause and generate separate error traces for each cause. The
the sub-predicates for the source of the error, and we use.” o
. . main hindrance is that, like the work with ESC/Java, it is
an independent oracle to determine the correctness of a

predicate. However, Shapiro’s algorithm stops at the firﬁ{o tlcalJrI]taJoZtere:ljba Tgciigfehse?:;;i?ii;r Oéaaﬁlleett) Ztlzau?c:[gscan
failing sub predicate. Our algorithm continues to gathép#l y P - P

. o : a heuristic for the problem by using correct traces to narrow
the failure points in the predicate, as well as produces the . I : -
. " own the problems in the failing traces. This heuristic\afio
into a human readable error message. Additionally, ERL uses . . L

- . . . : or a model checker to be treated in a fashion similar to our
a heuristic to identify a responsible object for the errottsat

the user receives direction on the failing object, not jinst toracle, but it requires that enough correct traces existideg

failing specification. it]]
ESC/Java uses an error reporting mechanism that alsd here is a large body of work on messages for typing errors
aims to provide the user with a failure point and a directdgummarizedin [10]). The research which uses programngfici
error message [7]. However, the error reporting mechanidhi] to find the causes of type errors [12]-[14] is the closest
is inherently different from ERL because ESC/Java's check ERL. Program slicing is a technique for analyzing which
that the specifications hold true universally as a set, whik@"ts of a program are involved in computing the value of
tools such as Acme check that individual specifications hofti variable at a particular program point. By analogy, ERL
true. Since ESC/Java’s specifications must hold true tegettfan be viewed as an approach for analyzing which parts of a
the theorem prover can not break apart the specifications &igcification and a model result are responsible for cadbing
check them individually the way ERLs oracle does. It is th&Pecification to fail on that model. Rather than followingada
oracle’s ability to analyze sub-predicates of the spediica and control-dependencies in a program, our approach awalyz
that allow ERL to find the root cause of the error and provid®®W the truth of a logical specification depends on the truth
the directed message. For ESC/Java, [7] can not find the r8bits parts.
cause of the error, but it does display the point where theAnother system for describing typing errors, Seminal [15],
theorem prover found a counter-example to its proof. To shavses a similar mechanism as ERL for separating the error-
the user how it got into this bad state, the ESC/Java ermgeneration system from the checker itself. Seminal alsaigre
generator creates a trace based upon labels it leaves in ttie checker as an oracle of knowledge and will break down
logical predicates. expressions into sub-expressions in order to find the root
ESC/Java also has slightly different goals from ERL dugause of a typing error. Upon finding the root cause, Seminal
to the way their users fix errors. The work on ESC/Java aearches for similar sub-expressions that will typecheack],
tempts to generate fewer errors and condense them; ESC/Jagaggests the “best” similar sub-expression to the usemas
produces one error for each method rather than one error &bternative. However, the sub-expression produced by is&Emi
each failing path. ERL attempts to do the opposite; it splithay not be the sub-expression the user actually wants, and
the errors at every opportunity. This difference makes esenmay then mislead the user. While ERL does not currently

provide a correct alternative, it also does not provide the
user with misleading information. As the two systems previd [1]
different kinds of information, we expect that using both
techniques would be beneficial for users. 2l
[3]
We have presented error reporting logic (ERL), a system
for automatically generating error messages from firseord E-:]
predicate logic. ERL presents a user with a precise error
message by automatically analyzing the specification tcsel [©]
only the predicates involved in the failure. Additionaityises
a heuristic to assign fault to a particular object so thatutber
is directed to the point of failure.

Our user study shows that most users were helped tw]
the ERL error messages, particularly in errors from con-
junction, disjunction, and universal quantification poades. [©]
ERL provided users with an indication of the source of the
error and specific instructions about how to fix the errofo]
When ERL did not help, it also did not mislead the users.
This is a large improvement over the control system whi !}é]
did not provide the users with any specific guidance. While
general guidance is useful for preventing future problents al3l
providing knowledge for the user, it does not help the user fix
the current problem. [14]

The user study also provided some interesting insights i tl%]
how users find the root cause of the error. In particular, we
found that users frequently scan any text for keywords thilat w
lead them to the cause of the error, and they only read text for
content if they are stuck or want to confirm their suspicions.
During the study, participants also vocalized concern ahoti
knowing which parts of the specification was failing. Figall
we found that participants fell back to pattern recognition
when they could not be helped through other mechanisms.
ERL addressed all the issues we saw except providing a
“good” pattern to follow.

While ERL is certainly useful for Acme and similar speci-
fication systems, we anticipate that it will have greaterdfién
in more complex specification systems. Systems which requir
more complex logical connectives can easily extend the ERL
concepts of splitting and joining errors to produce mordulse
error messages. ERL may also prove beneficial for systems
where specifications are globally distributed by pinpaigti
only the relevant parts of the global specification. We look
forward to seeing how other specification systems may be able
to extend the concepts presented in ERL.

VIII. CONCLUSION

(7]

ACKNOWLEDGEMENTS

The authors would like to thank the AcmeStudio team for
their feedback and assistance, especially Bradley Schandrl
Nicholas Sherman. This work was supported in part by NSF
grant CCF-0546550, DARPA contract HR00110710019, the
Department of Defense, Army Research Office grant number
DAAD19-02-1-0389 entitled Perpetually Available and Secu
Information Systems, the Software Industry Center at CMU
and its sponsors, especially the Alfred P. Sloan Foundation
and a fellowship from Los Alamos National Laboratory.

REFERENCES

D. Garlan, R. Monroe, and D. Wile, “Acme: an architectutescription
interchange language,” iGonf. of the Centre for Advanced Studies on
Collaborative research1997.

D. Hou and H. Hoover, “Using SCL to specify and check dasigtent

in source code,Trans. on Software Eng2006.

D. Jackson, “Alloy: a lightweight object modelling ndi@an,” Trans.
Softw. Eng. Methodql2002.

“AcmeStudio,” http://www.cs.cmu.edu/ acme/AcmeSaild

] E. Y. Shapiro, “Algorithmic program diagnosis,” iith Principles of

programming languagesl982.

D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks, “Softwechi-

tecture themes in JPL's Mission Data SystetiEE Aerospace Conf.
Proc., vol. 7, pp. 259-268 vol.7, 2000.

K. R. M. Leino, T. Millstein, and J. B. Saxe, “Generatingra traces
from verification-condition counterexamples3ci. Comput. Program.
2005.

A. Groce and W. Visser, “What went wrong: Explaining ctenexam-

ples,” in 10th Intl. SPIN Workshqp2003.

T. Ball, M. Naik, and S. K. Rajamani, “From symptom to caugdo-

calizing errors in counterexample traces,”Rninciples of programming
languages 2003.

B. Heeren, “Top quality type error messages,” PhD theiniversiteit

Utrecht, The Netherlands, 2005.

M. Weiser, “Program slicing,Trans. Software Engineeringuly 1984.

] V. Choppella and C. Haynes, “Diagnosis of ill-typed grams,” Indiana

University, Tech. Rep. 426, 1994.

C. Haack and J. B. Wells, “Type error slicing in impligityped higher-
order languagesSci. Comput. Programvol. 50, no. 1-3, pp. 189-224,
2004.

F. Tip and T. B. Dinesh, “A slicing-based approach focdting type
errors,” Trans. Sfw. Eng. Methdvol. 10, no. 1, pp. 5-55, 2001.

B. S. Lerner, M. Flower, D. Grossman, and C. Chambergat&hing
for type-error messages,” iRrogramming language design and imple-
mentation 2007, pp. 425-434.

